Mild Acidosis Delays Hypoxic Spreading Depression Neuronal Recovery in Hippocampal Slices
نویسنده
چکیده
Severe tissue acidosis has been viewed traditionally as a damaging component of cerebral hypoxia. However, a neuroprotective action of low pH during hypoxia has been described in primary neuronal cultures. To identify and characterize this effect in mature brain tissue, adult rat hippocampal slices were made hypoxic after adjusting pH, with HCI or NaOH. Ion-selective microelectrodes were positioned in CA1 to record evoked field potentials, extracellular DC voltage (V,), pH, and [Ca2+10. Orthodromic population spike amplitude was used as a measure of slice recovery 2 hr after reoxygenation. All slices became markedly acidotic during hypoxia (ApH, 0.4 pH unit). Following restoration of 0, and bath pH to 7.4, slice pH, returned to its pretreatment level regardless of experimental treatment, hypoxic duration, or the degree of electrophysiological recovery. When either the period of hypoxia or the duration of HSD was held constant, acid-treated slices exhibited a significant improvement in recovery. However, in neither paradigm did the recovery of alkaline-treated slices differ from controls. Mild acidosis (bath pH = 6.9-7.3) caused a reversible depression of the orthodromic population spike, an increase in the latency of hypoxic spreading depression-like depolarization (HSD), and a decrease in the magnitude of the associated negative V, shift. For each of these parameters, mild alkalinity (bath pH = 7.7) had the opposite effect. Acid treatment did not affect the decrease in [Ca2+lo during HSD but accelerated its recovery after reoxygenation. These results suggest that mild acidosis may limit hypoxic neuronal injury in vitro by delaying HSD onset and by additional mechanisms unrelated to the degree of calcium influx during neuronal depolarization. [
منابع مشابه
Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملRole of transporters and ion channels in neuronal injury under hypoxia.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate ...
متن کاملAcute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia In vivo.
We have previously shown that hypoxia induces both acute and chronic epileptogenic effects that are age dependent. Global hypoxia (3-4% O2) induces seizure activity in the developing brain [postnatal day (P)10-12] but not at younger or older ages. Adult rats with prior seizures induced by hypoxia at P10 show increased seizure susceptibility to chemical convulsants compared with controls. In the...
متن کاملLactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices.
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slice...
متن کاملThe Effect of Sodium Butyrate on Hippocampal Cell Damage and Apoptic Neurons Density in Cerebral Hypoxic-Ischemia Model
Introduction and aim: Histone deacetylase inhibitors (HDACi) have neuroprotective effects on amelioration of cerebral ischemic injuries. This study was investigated the effects of sodium butyrate (SB) as a HDACi hippocampal cell damage and neuronal/dark neuronal density in a rat cerebral hypoxic ischemia (HI) model. Materials and Methods: In this experimental study, 40 male Wistar rats (weight:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003